Lecture 13

Recall the following definition from Lee. "1
Definition A cycle of length 2 is called a tramposition.
Weill soon see that it is advantageous to write any permutation as a product of transpositions. So we first prove,

Theorem 1 Any cycle of length $r \geq 2$ cam be written as a product of transpositions.
Proof Before proving this let's understand what the theorem io saying. Suppose we have a cycle (12345). We want to write it as a product of transpositions. How do we do this?

First of all we know that $1 \longrightarrow 2$, so we write (12). This is a transposition in which $1 \rightarrow 2$ and rest all the elements are fixed. Now we want to multiply it with another transpositions so that we should move forward in expressing (12345). Since 1 is already mapped to $2 \Rightarrow$ now we should worry about $2 \rightarrow 3$.

A naive guess would be to write (23). But observe that overall weill have (23) (12) which is telling us that $1 \rightarrow 3$ as first $1 \rightarrow 2$ (from (12)) and then $2 \rightarrow 3$ (from (23)) which is wrong. This can be remedied easily by writing $(13)(12)$ as now this is telling us that $1 \rightarrow 2$ (as $2 \rightarrow 2$ in (13)) and $2 \rightarrow 3($ as $2 \rightarrow 1$ in (12) and $1 \rightarrow 3 \operatorname{in~(13)).~}$

So we have got $1 \rightarrow 2,2 \rightarrow 3$ part in (12345). Now we want to take care of $3 \rightarrow 4$. This again can be taken care by multiplying (14) to $(13)(12)$. So finally well get

$$
(12345)=(15)(14)(13)(12)
$$

But there was nothing special about (12345).
Infect, if we start with any cycle $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ Then it can be written, using the same procedure as above, as

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\left(a_{1}, a_{k}\right) \cdot\left(a_{1}, a_{k-1}\right) \ldots\left(a_{1}, a_{3}\right)\left(a_{1}, a_{2}\right)
$$

which completes the proof of the theorem.

Theorem 2 Any $\sigma \in S_{n}$ can be written as a product of transpositions.

Proof Consider the identity $\epsilon \in S_{n}$. Then

$$
\epsilon=(12)(12)
$$

as $|(12)|=2=0 \in$ can be written as a product of tromspositions. Now the Theorem follows from Theorem 1 above and Theorem 1 ie Lee. 12.

Exercise Consider $(123)(456) \in S_{8}$. Write this as a product of tromspositions.

Let's come back to the example vie the proof of Theorem 1 .

$$
(12345)=(15)(14)(13)(12)
$$

You can check that

$$
(12345)=(45)(35)(25)(15)
$$

Also, $(12345)=(45)(25)(12)(25)(23)(13)$ So, a permutatioir can be written as a product of tromspositions in more than one ways. So what's the advomtage?
Notice that the number of transpositions being used in all the representations of (12345) is even.
In fact, try to check the same thing for any other permutation and the number of transpositions required will be either even or odd. Weill prove this below, but first a Lemma.

Lemma if $\epsilon=\beta_{1}, \beta_{2} \ldots \beta_{\gamma}$ where $\beta_{i \text { 's }}$ are tromspositions $\Rightarrow \nabla$ iris even.

Proof First of all $r \neq 1$ as a transposition \neq identity. If $r=2$, we are clone. So suppose $r>2$ and we proceed by induction, i.e., we know that is the \# of tromspositions is less than Ir then they are even. We want to show that r is even.

Let's look at $\beta_{r-1} \beta_{r}$, ie. the rightmost 2 tromspositions. Suppose $\beta_{r}=(a b)$. Then there are 4 choices for $\beta_{r-1} \beta_{r}$

1) $\beta_{\pi-1} \beta_{r}=(a b)(a b)$
2) $\beta_{r-1} \beta_{r}=(a c)(a b)$
3) $\beta_{r-1} \beta_{r}=(b c)(a b)$
4) $\beta_{r-1} \beta_{r}=(c d)(a b)$.

Case 1 If $\beta_{\pi-1} \beta_{\pi}=(a b)(a b)=\epsilon \Rightarrow$ we get $\epsilon=\beta_{1} \ldots \beta_{r-2} \Rightarrow$ by Principle of Mathema-
-tical induction $r-2$ is even $\Rightarrow r$ is even.

Case 2 We are ire any of the three cases above. The goal is to write them in such a way so that ' a ' appears in the 1 st spot of the left-- most transposition. More precisely, write

$$
\begin{array}{ll}
(a c)(a b)=(a b)(b c) & \text { or } \\
(b c)(a b)=(a c)(c b) & \text { or } \\
(c d)(a b)=(a b)(c d) &
\end{array}
$$

So we can write $\epsilon=\beta_{1} \beta_{2} \ldots \beta_{\pi-2}(a b)(b c)$ or

$$
\epsilon=\beta_{1} \beta_{2} \ldots \beta_{r-2}(a c)(c b) \text { or } \epsilon=\beta_{1} \ldots \beta_{r-2}(a b)(c d) \text {. }
$$

Repeat the same procedure with $\beta_{r-2} \beta_{r-1}$, then

$$
\beta_{r-3} \beta_{r-2} \cdots \beta_{1} \beta_{2} .
$$

Just like above we either get (21-2) tromspo-
-sitions \Rightarrow r-even or $\epsilon=$ product of r transpositions with the only ' a ' accusing on the first spot in the leftmost transposition, i.e.,

$$
\epsilon=(a b) \beta_{2} \ldots \beta_{r}
$$

Now if LHS is $\epsilon \Rightarrow \beta_{2}$ must be (ab) otherwise $a \rightarrow b$ on the RHS but $a \rightarrow a$ in ϵ $\Rightarrow \epsilon=\beta_{3} \ldots \beta_{r}$ which are $(r-2)$ transposi--lions $\Rightarrow r-2$ is even $\Rightarrow \quad r=$ even.

Theorem 3 if $\sigma \in S_{n}$ can be written as a product of tromspositions ire more than one ways then the \# of tromspositions ie the decomposition is either always ever or always odd.
Proof Suppose $\sigma=\beta_{1} \ldots \beta_{r}$ and

$$
\sigma=\alpha_{1} \ldots \alpha_{s} \text {. Then }
$$

$$
\begin{aligned}
& \beta_{1} \beta_{2} \ldots \beta_{r}=\alpha_{1} \alpha_{2} \ldots \alpha_{s} \\
\Rightarrow & \epsilon=\alpha_{1} \alpha_{2} \ldots \alpha_{s} \beta_{r}^{-1} \beta_{r-1}^{-1} \ldots \beta_{1}^{-1}
\end{aligned}
$$

now inverse of a tromsposition is the tramspo-- sition itself $\left(a s(a b)(a b)=\epsilon \Rightarrow(a b)^{-1}=(a b)\right)$.

$$
=D \quad \epsilon=\alpha_{1} \alpha_{2} \ldots \alpha_{s} \beta_{r} \beta_{r-1} \ldots \beta_{1}
$$

$=0 r+s=$ even from the Lemma above \Rightarrow either both r and s are even or both are odd.

This theorem motivates the following definition.
Definition Even and odd permutation A permutation that can be expressed as a product of an even number of transpositions $i s$ called an even permutation.

A permutation that can be expressed as a product of an odd number of transpositions is called on odd permutation.

So the Lemma is telling us that the identity permutation is an even permutation and Theorem 3 is telling us that the definition is unambigous.

Theorem 4 The set of even permutations in S_{n} forms a subgroup of S_{n} called the alternating group on n symbols and is denoted by A_{n}. Proof. Exercise.
We end with finding the order of A_{n}.

Theorems For $n>1,\left|A_{n}\right|=\frac{n!}{2}$.

Proof Exercise.
Hint:- Prove that the number of even permuta--Lions in $S_{n}=$ the number of odd permutations is S_{n}.
So \#(even permutations) + \#(odd permutations) $=n!$

$$
\begin{aligned}
& \Rightarrow 2 \# \text { (even permutations) }=n! \\
& =0 \quad\left|A_{n}\right|=\frac{n!}{2}
\end{aligned}
$$

