Lecture 13

Definition A cycle of length 2 is called a transposition.

We'll soon see that it is advantageous to write any permutation as a product of transpositions. So we first prove,

Theorem 1 Any cycle of length
$$r \ge 2$$
 can be written
as a product of transpositions.
Proof Before proving this let's understand
what the theorem is saying. Suppose we have
a cycle (12345). We want to write it as
a product of transpositions. How do we do this?

First of all we know that $1 \rightarrow 2$, so we write (12). This is a transposition in which $1 \rightarrow 2$ and set all the elements are fixed. Now we want to multiply it with another chanepositions so that we should move forward in expressing (12345). Since I is already mapped to 2 = 0 now we should worry about $2 \rightarrow 5$.

A naive guess would be to write (23). But Observe that overall we'll have (23)(12) which is telling us that $1 \rightarrow 3$ as first $1 \rightarrow 2$ (from (12)) and then $2 \rightarrow 3$ (from (23)) which is wrong. This can be vemedied easily by writing (13)(12) as now this is telling us that $1 \rightarrow 2$ (as $2 \rightarrow 2$ in (13)) and $2 \rightarrow 3$ (as $2 \rightarrow 1$ in (12) and $1 \rightarrow 3$ in (13)). So we have got $1 \rightarrow 2$, $2 \rightarrow 3$ part in (12345). Now we want to take care of $3 \rightarrow 4$. This again can be taken care by multiplying (14) to (13)(12). So finally we'll get (12345) = (15)(14)(13)(12)

But there was nothing special about (12345). In fact, if we start with any cycle $(a_1, a_2, ..., a_k)$ Then it can be written, using the same procedure as above, as $(a_1, a_2, ..., a_k) = (a_1, a_k) \cdot (a_1, a_{k-1}) \cdots (a_1, a_3) \cdot (a_1, a_2)$

Theorem 2 Any
$$\sigma \in S_n$$
 can be written as a product of transpositions.

Proof Consider the identity
$$\in \in S_n$$
. Then
 $\in = (12)(12)$
 $ao f(12) f = 2 = D \in C$ and be written as a
product of transpositions. Now the Theorem
follows from Theorem 1 above and Theorem 1 in
Lec. 12.

(J)

<u>Exercise</u> Consider (123)(456) & Sg. Write this as a product of transpositions.

Let's come back to the example in the proof of Theorem I. (12345) = (15)(14)(13)(12)You can check that (12345) = (45)(35)(25)(15)

Also, (12345) = (45)(25)(12)(25)(23)(13) So, a permutation can be written as a product of tromspositions in more than one ways. So what's the advantage? Notice that the number of transpositions being used in all the representations of (12345) & even. In fact, try to check the same thing for any other permutation and the number of transpositions required will be either even or odd. We'll prove this below, but first a Lemma.

Lemma If
$$E = \beta_1 \beta_2 \dots \beta_r$$
 where β_i 's are transpositions = ∇ gris even.

Proof First of all $r \neq 1$ as a transposition \neq identity. If r = 2, we are clone. So suppose r > 2 and we proceed by induction, i.e., we know that if the # of transpositions is less than of then they are even. We want to show that I is even.

Let's look at $\beta_{n-1}\beta_{n-1}\beta_{n-1}$, i.e. the sughtmost 2 transpositions. Suppose $\beta_n = (ab)$. Then there are 4 choices for $\beta_{n-1}\beta_n$ 1) $\beta_{n-1}\beta_n = (ab)(ab)$

2)
$$\beta_{n-1}\beta_n = (ac)(ab)$$

3) $\beta_{n-1}\beta_n = (bc)(ab)$
4) $\beta_{n-1}\beta_n = (cd)(ab)$.
Case 1 If $\beta_{n-1}\beta_n = (ab)(ab) = \epsilon = p$ we get
 $\epsilon = \beta_1 \dots \beta_{n-2} = p$ by Principle of Mathema-

-tical induction n-2 is even = P n is even.

So we can write $\epsilon = \beta_1 \beta_2 \dots \beta_{n-2} (ab)(bc)$ or $\epsilon = \beta_1 \beta_2 \dots \beta_{n-2} (ac)(cb)$ or $\epsilon = \beta_1 \dots \beta_{n-2} (ab)(cd).$

Repeat the same procedure with Br-2Br-1, then Br-3Br-2...BiB2.

Just like abone we either get (91-2) tromspo.

Theorem 3 If $r \in S_n$ can be written as a product of transpositions in more than one ways then the # of transpositions in the decomposition is either always ever or always odd. <u>Proof</u> Suppose $r = \beta_1 \dots \beta_n$ and $r = \alpha_1 \dots \alpha_s$. Then

$$\beta_1\beta_2\cdots\beta_n = \alpha_1\alpha_2\cdots\alpha_s$$
$$= \mathcal{D} \quad \mathcal{C} = \alpha_1\alpha_2\cdots\alpha_s\beta_{n}\beta_{n-1}\beta_{n-1}\cdots\beta_n\beta_n$$

Now inverse of a transposition is the transpo--sition itself (as $(ab)(ab) = E = D(ab)^{-1} = (ab)$). = $D = E = \alpha_1 \alpha_2 \dots \alpha_s \beta_{2n} \beta_{2n-1} \dots \beta_1$ = 0 = 91 + s = even from the Lemma above= <math>T either both 21 and s are even or both are odd.

VII

This theorem motivates the following definition. <u>Definition</u> Even and odd permutation A permutation that can be expressed as a product of an even number of transpositions is called an even permutation. A permutation that can be expressed as a product of an odd number of transpositions is called an odd permutation.

So the Lemma is telling us that the identity permutation is an even permutation and Theorem 3 is telling us that the definition is Unambigous.

Theorem 4 The set of even permutations in Sn forms a subgroup of Sn called the alternating group on n symbols and is denoted by An. Proof. Exercise. We end with finding the order of An.

Theorem 5 For
$$n > 1$$
, $|A_n| = \frac{n!}{2}$.

Proof Exercise.
Hint:- Prove that the number of even permuta-
-tions in
$$S_n =$$
 the number of odd permutations
in S_n .
So # (even permutations) + # (odd permutations) = π_1^1
=D 2 # (even permutations) = n_1^1
=D $|A_n| = \frac{n!}{2}$

